diện tích tứ giác đều

Thể tích khối chóp tứ giác đều là 1 trong mỗi kiến thức và kỹ năng cực kỳ cần thiết vô phần hình học tập lớp 12. Dạng toán này cũng thông thường xuất hiện tại không ít trong số đề thi đua trung học phổ thông Quốc Gia. Vì vậy, nhằm nắm vững được toàn cỗ công thức và cơ hội giải những bài xích tập luyện “khó nhằn”, những em hoàn toàn có thể tìm hiểu thêm nội dung bài viết tại đây của VUIHOC.

1. Khối chóp tứ giác đều là gì?

Là hình chóp đem lòng là hình vuông vắn, lối cao của chóp trải qua tâm lòng (giao của 2 lối chéo cánh hình vuông).

Bạn đang xem: diện tích tứ giác đều

Hình chóp tứ giác đều - thể tích khối chóp tứ giác đều

2. Tính hóa học khối chóp tứ giác đều

- Cạnh mặt mày vày nhau

- Đáy là hình vuông

- Chân lối cao trùng với tâm mặt mày đáy 

- Các mặt mày mặt là những tam giác cân đối nhau

- Các góc tạo ra vày cạnh mặt mày và mặt mày lòng vày nhau

- Các góc tạo ra vày những mặt mày mặt và mặt mày lòng đều vày nhau

Ví dụ:

Với hình chóp tứ giác đều SABCD, tao có:

  • Tứ giác ABCD là hình vuông vắn tâm O

  • SO \perp (ABCD)

  • (ABCD)

  • SA=SB=SC=SD

  • (SA; (ABCD))=(SD;(ABCD))= (SB;(ABCD))=(SC;(ABCD))

Hình chóp tứ giác đều SABCD - thể tích khối chóp tứ giác đều

3. Công thức tính thể tích khối chóp tứ giác đều

Công thức V = (1/3).Sđáy.h

Trong đó:

+ V: Thể tích hình chóp tứ giác đều.

+ h: Chiều cao hình chóp tứ giác đều.

+ Sđáy: Diện tích lòng hình chóp tứ giác đều.

4. Công thức tính diện tích S khối chóp tứ giác đều

4.1. Tính diện tích S xung quanh

Công thức: Sxq= 4.S 

Trong đó:

+ Sxq: Diện tích xung xung quanh của hình chóp tứ giác đều.

+ S: Diện tích mặt mày mặt của hình chóp tứ giác đều.

Diện tích  xung xung quanh chóp tứ giác đều - công thức thể tích của khối chóp tứ giác đều

4.2. Tính diện tích S toàn phần

Công thức: Stp = Sxq + Sđáy

Trong đó:

+ Stp: Diện tích toàn phần của hình chóp tứ giác đều.

+ Sxq: Diện tích xung xung quanh của hình chóp tứ giác đều.

+ Sđáy: Diện tích lòng của hình chóp tứ giác đều.

Trọn cỗ bí mật xử lý từng dạng bài xích tập luyện hình học tập ko gian

5. Một số bài xích thói quen thể tích khối chóp tứ giác đều (kèm lời nói giải chi tiết)

Câu 1: Cho S.ABCD là hình chóp đều. Tính thể tích khối chóp S.ABCD biết AB = a; SA = a. AB = a; SA = a.

Giải

Bài thói quen thể tích của khối chóp tứ giác đều

\Rightarrow SH = \sqrt{SA^{2} - AH^{2}} = \frac{a\sqrt{2}}{2}

Diện tích của lòng ABCD: SABCD = a2

\Rightarrow V_{S.ABCD} = \frac{1}{3}S_{ABCD}.SH = \frac{1}{3}a^{2}.\frac{a\sqrt{2}}{2} = \frac{a^{3\sqrt{2}}}{6}

Câu 2: Tính thể tích khối chóp tứ giác đều sở hữu toàn bộ những cạnh vày a.?

Giải

Bài tập luyện thể tích khối chóp tứ giác đều

Ta có: Diện tích lòng ABCD là a2

SO^{2} = SB^{2} - OB^{2} = a^{2} - (\frac{a\sqrt{2}}{2})^{2} = \frac{a^{2}}{2}

Suy rời khỏi tao có: SO = \frac{a\sqrt{2}}{2}

Vậy thể tích khối chóp cần thiết dò thám là:

V_{S.ABCD} = \frac{1}{3}.\frac{a\sqrt{2}}{2}.a^{2} = \frac{a^{3}\sqrt{2}}{6}

Câu 3: Cho hình chóp tứ giác đều sở hữu cạnh lòng vày x. Diện tích xung xung quanh gấp rất nhiều lần diện tích S lòng. Tính thể tích khối chóp.

Xem thêm: MitomTV - Trang xem bóng đá được yêu thích nhất ở Việt Nam

Giải

Bài tập luyện thể tích khối chóp tứ giác đều

Thể tích khối chóp được xem theo gót công thức:

V = \frac{1}{3}B.h với B = x2

Gọi điểm O là tâm của hình vuông vắn và điểm I là trung điểm của đoạn trực tiếp CD

\Rightarrow SI \perp CD

Gọi chiều nhiều năm của đoạn SO là h

\Rightarrow SI = \sqrt{SO^{2} + OI^{2}} = \sqrt{h^{2} + \frac{x^{2}}{4}}

Có Sxq = 2SI.CD; Sxq = 2B

2x\sqrt{h^{2} + \frac{x^{2}}{4}} = 2x^{2} \Rightarrow \sqrt{h^{2} + \frac{x^{2}}{4}} = x

Từ cơ suy ra:

\Rightarrow h^{2} + \frac{x^{2}}{4} = x^{2} \Rightarrow \frac{3x^{2}}{4} = h^{2} \Rightarrow h = \frac{x\sqrt{3}}{2}

Lúc cơ tao hoàn toàn có thể tích của hình chóp là:

V = \frac{1}{3}x^{2}.\frac{x\sqrt{3}}{2} = \frac{x^{3}\sqrt{3}}{6}

Câu 4: Cho hình chóp đều S.ABCD đem cạnh vày a và cạnh mặt mày tạo ra với lòng góc 60 phỏng. Tính thể tích hình chóp đều S.ABCD.

Giải

Gọi O là kí thác điểm của AC và BD \Rightarrow SO \perp (ABCD)

\Rightarrow \widehat{SCO} = 60^{0} \Rightarrow tan60^{0} = \frac{SO}{OC} \Rightarrow SO = OC\sqrt{3} = \frac{a}{\sqrt{2}}.\sqrt{3}

\Rightarrow V = \frac{1}{3}a\sqrt{\tfrac{3}{2}}.a^{2} = \frac{a^{3}\sqrt{6}}{6}

Câu 5: Cho khối chóp tứ giác đều sở hữu cạnh lòng vày a, cạnh mặt mày tất tả gấp đôi cạnh lòng. Tính thể tích khối chóp tứ giác tiếp tục cho tới.

Giải

Ta có AC = a\sqrt{2} \Rightarrow AO = \frac{a\sqrt{2}}{2} \Rightarrow SO = \sqrt{SA^{2} - OA^{2}} = \frac{a\sqrt{14}}{2}

Vậy V_{S.ABCD} = \frac{1}{3}SO.S_{ABCD} = \frac{1}{3}.\frac{\sqrt{14}}{2}.a^{3} = \frac{\sqrt{14}}{6}a^{3}

Câu 6: Cho hình chóp tứ giác đều sở hữu cạnh lòng vày a và cạnh mặt mày vày a\sqrt{3}. Tính thể tích của hình chóp cơ theo gót a.

Giải

Gọi h là độ cao của hình chóp tiếp tục cho tới, tao có: 

h = \sqrt{3a^{2} - \frac{a^{2}}{2}} = \frac{a\sqrt{10}}{2}

V = \frac{1}{3}S_{ABCD}.h = \frac{1}{3}a^{2}.\frac{a\sqrt{10}}{2} = \frac{a^{3}\sqrt{10}}{6}

Câu 7: Chó hình chóp tứ giác đều sở hữu cạnh lòng vày a, cạnh mặt mày vày a. Tính thể tích khối chóp cơ.

Giải

Xét hình chóp tứ giác đều S.ABCD

Ta có: OD = \frac{a\sqrt{2}}{2}, SO = \sqrt{SD^{2} - OD^{2}} = \sqrt{2a^{2} - \frac{a^{2}}{2}} = \frac{a\sqrt{6}}{2}

V_{S.ABCD} = \frac{1}{3}.SO.S_{ABCD} = \frac{1}{3}.\frac{a\sqrt{6}}{2}.a^{2} = \frac{a^{3}\sqrt{6}}{6}

PAS VUIHOCGIẢI PHÁP ÔN LUYỆN CÁ NHÂN HÓA

Khóa học tập online ĐẦU TIÊN VÀ DUY NHẤT:  

⭐ Xây dựng trong suốt lộ trình học tập kể từ thất lạc gốc cho tới 27+  

⭐ Chọn thầy cô, lớp, môn học tập theo gót sở thích  

⭐ Tương tác thẳng hai phía nằm trong thầy cô  

⭐ Học đến lớp lại cho tới lúc nào hiểu bài xích thì thôi

⭐ Rèn tips tricks chung tăng cường thời hạn thực hiện đề

⭐ Tặng full cỗ tư liệu độc quyền vô quy trình học tập tập

Đăng ký học tập demo free ngay!!

Xem thêm: văn tả cảnh sinh hoạt

Sau nội dung bài viết này, kỳ vọng những em tiếp tục tóm dĩ nhiên được toàn cỗ lý thuyết và bài xích tập luyện vận dụng tính thể tích khối chóp tứ giác đều. Để được thêm nhiều kiến thức và kỹ năng hoặc về công thức toán hình 12, các em hoàn toàn có thể truy vấn ngay lập tức Vuihoc.vn nhằm ĐK thông tin tài khoản hoặc contact trung tâm tương hỗ và chuẩn bị chất lượng cho tới kỳ thi đua ĐH sắp tới đây nhé!

>> Xem thêm:

  • 12 công thức tính thể tích khối chóp kèm cặp ví dụ cụ thể
  • Công thức tính thể tích khối tròn trĩnh xoay và bài xích tập luyện vận dụng
  • Công thức tính thể tích khối cầu thời gian nhanh và đúng mực nhất
  • Công thức tính thể tích khối lăng trụ đứng không thiếu thốn nhất