khối chóp tứ giác đều

Thể tích khối chóp tứ giác đều là 1 trong trong mỗi kỹ năng cực kỳ cần thiết vô phần hình học tập lớp 12. Dạng toán này cũng thông thường xuất hiện tại tương đối nhiều trong những đề thi đua trung học phổ thông Quốc Gia. Vì vậy, nhằm nắm vững được toàn cỗ công thức và cơ hội giải những bài xích luyện “khó nhằn”, những em rất có thể xem thêm nội dung bài viết tại đây của VUIHOC.

1. Khối chóp tứ giác đều là gì?

Là hình chóp sở hữu lòng là hình vuông vắn, đàng cao của chóp trải qua tâm lòng (giao của 2 đàng chéo cánh hình vuông).

Bạn đang xem: khối chóp tứ giác đều

Hình chóp tứ giác đều - thể tích khối chóp tứ giác đều

2. Tính hóa học khối chóp tứ giác đều

- Cạnh mặt mày bởi vì nhau

- Đáy là hình vuông

- Chân đàng cao trùng với tâm mặt mày đáy 

- Các mặt mày mặt là những tam giác thăng bằng nhau

- Các góc tạo ra bởi vì cạnh mặt mày và mặt mày lòng bởi vì nhau

- Các góc tạo ra bởi vì những mặt mày mặt và mặt mày lòng đều bởi vì nhau

Ví dụ:

Với hình chóp tứ giác đều SABCD, tớ có:

  • Tứ giác ABCD là hình vuông vắn tâm O

  • SO \perp (ABCD)

  • (ABCD)

  • SA=SB=SC=SD

  • (SA; (ABCD))=(SD;(ABCD))= (SB;(ABCD))=(SC;(ABCD))

Hình chóp tứ giác đều SABCD - thể tích khối chóp tứ giác đều

3. Công thức tính thể tích khối chóp tứ giác đều

Công thức V = (1/3).Sđáy.h

Trong đó:

+ V: Thể tích hình chóp tứ giác đều.

+ h: Chiều cao hình chóp tứ giác đều.

+ Sđáy: Diện tích lòng hình chóp tứ giác đều.

4. Công thức tính diện tích S khối chóp tứ giác đều

4.1. Tính diện tích S xung quanh

Công thức: Sxq= 4.S 

Trong đó:

+ Sxq: Diện tích xung xung quanh của hình chóp tứ giác đều.

+ S: Diện tích mặt mày mặt của hình chóp tứ giác đều.

Diện tích  xung xung quanh chóp tứ giác đều - công thức thể tích của khối chóp tứ giác đều

4.2. Tính diện tích S toàn phần

Công thức: Stp = Sxq + Sđáy

Trong đó:

+ Stp: Diện tích toàn phần của hình chóp tứ giác đều.

+ Sxq: Diện tích xung xung quanh của hình chóp tứ giác đều.

+ Sđáy: Diện tích lòng của hình chóp tứ giác đều.

Trọn cỗ bí mật giải quyết và xử lý từng dạng bài xích luyện hình học tập ko gian

5. Một số bài xích thói quen thể tích khối chóp tứ giác đều (kèm lời nói giải chi tiết)

Câu 1: Cho S.ABCD là hình chóp đều. Tính thể tích khối chóp S.ABCD biết AB = a; SA = a. AB = a; SA = a.

Giải

Bài thói quen thể tích của khối chóp tứ giác đều

\Rightarrow SH = \sqrt{SA^{2} - AH^{2}} = \frac{a\sqrt{2}}{2}

Diện tích của lòng ABCD: SABCD = a2

\Rightarrow V_{S.ABCD} = \frac{1}{3}S_{ABCD}.SH = \frac{1}{3}a^{2}.\frac{a\sqrt{2}}{2} = \frac{a^{3\sqrt{2}}}{6}

Câu 2: Tính thể tích khối chóp tứ giác đều sở hữu toàn bộ những cạnh bởi vì a.?

Giải

Bài luyện thể tích khối chóp tứ giác đều

Ta có: Diện tích lòng ABCD là a2

SO^{2} = SB^{2} - OB^{2} = a^{2} - (\frac{a\sqrt{2}}{2})^{2} = \frac{a^{2}}{2}

Suy đi ra tớ có: SO = \frac{a\sqrt{2}}{2}

Vậy thể tích khối chóp cần thiết dò thám là:

V_{S.ABCD} = \frac{1}{3}.\frac{a\sqrt{2}}{2}.a^{2} = \frac{a^{3}\sqrt{2}}{6}

Câu 3: Cho hình chóp tứ giác đều sở hữu cạnh lòng bởi vì x. Diện tích xung xung quanh gấp hai diện tích S lòng. Tính thể tích khối chóp.

Xem thêm: nguyên nhân nào sau đây dẫn đến sự hình thành gió mùa ở việt nam

Giải

Bài luyện thể tích khối chóp tứ giác đều

Thể tích khối chóp được xem theo dõi công thức:

V = \frac{1}{3}B.h với B = x2

Gọi điểm O là tâm của hình vuông vắn và điểm I là trung điểm của đoạn trực tiếp CD

\Rightarrow SI \perp CD

Gọi chiều lâu năm của đoạn SO là h

\Rightarrow SI = \sqrt{SO^{2} + OI^{2}} = \sqrt{h^{2} + \frac{x^{2}}{4}}

Có Sxq = 2SI.CD; Sxq = 2B

2x\sqrt{h^{2} + \frac{x^{2}}{4}} = 2x^{2} \Rightarrow \sqrt{h^{2} + \frac{x^{2}}{4}} = x

Từ bại liệt suy ra:

\Rightarrow h^{2} + \frac{x^{2}}{4} = x^{2} \Rightarrow \frac{3x^{2}}{4} = h^{2} \Rightarrow h = \frac{x\sqrt{3}}{2}

Lúc bại liệt tớ rất có thể tích của hình chóp là:

V = \frac{1}{3}x^{2}.\frac{x\sqrt{3}}{2} = \frac{x^{3}\sqrt{3}}{6}

Câu 4: Cho hình chóp đều S.ABCD sở hữu cạnh bởi vì a và cạnh mặt mày tạo ra với lòng góc 60 phỏng. Tính thể tích hình chóp đều S.ABCD.

Giải

Gọi O là kí thác điểm của AC và BD \Rightarrow SO \perp (ABCD)

\Rightarrow \widehat{SCO} = 60^{0} \Rightarrow tan60^{0} = \frac{SO}{OC} \Rightarrow SO = OC\sqrt{3} = \frac{a}{\sqrt{2}}.\sqrt{3}

\Rightarrow V = \frac{1}{3}a\sqrt{\tfrac{3}{2}}.a^{2} = \frac{a^{3}\sqrt{6}}{6}

Câu 5: Cho khối chóp tứ giác đều sở hữu cạnh lòng bởi vì a, cạnh mặt mày vội vàng gấp đôi cạnh lòng. Tính thể tích khối chóp tứ giác vẫn cho tới.

Giải

Ta có AC = a\sqrt{2} \Rightarrow AO = \frac{a\sqrt{2}}{2} \Rightarrow SO = \sqrt{SA^{2} - OA^{2}} = \frac{a\sqrt{14}}{2}

Vậy V_{S.ABCD} = \frac{1}{3}SO.S_{ABCD} = \frac{1}{3}.\frac{\sqrt{14}}{2}.a^{3} = \frac{\sqrt{14}}{6}a^{3}

Câu 6: Cho hình chóp tứ giác đều sở hữu cạnh lòng bởi vì a và cạnh mặt mày bởi vì a\sqrt{3}. Tính thể tích của hình chóp bại liệt theo dõi a.

Giải

Gọi h là độ cao của hình chóp vẫn cho tới, tớ có: 

h = \sqrt{3a^{2} - \frac{a^{2}}{2}} = \frac{a\sqrt{10}}{2}

V = \frac{1}{3}S_{ABCD}.h = \frac{1}{3}a^{2}.\frac{a\sqrt{10}}{2} = \frac{a^{3}\sqrt{10}}{6}

Câu 7: Chó hình chóp tứ giác đều sở hữu cạnh lòng bởi vì a, cạnh mặt mày bởi vì a. Tính thể tích khối chóp bại liệt.

Giải

Xét hình chóp tứ giác đều S.ABCD

Ta có: OD = \frac{a\sqrt{2}}{2}, SO = \sqrt{SD^{2} - OD^{2}} = \sqrt{2a^{2} - \frac{a^{2}}{2}} = \frac{a\sqrt{6}}{2}

V_{S.ABCD} = \frac{1}{3}.SO.S_{ABCD} = \frac{1}{3}.\frac{a\sqrt{6}}{2}.a^{2} = \frac{a^{3}\sqrt{6}}{6}

PAS VUIHOCGIẢI PHÁP ÔN LUYỆN CÁ NHÂN HÓA

Khóa học tập online ĐẦU TIÊN VÀ DUY NHẤT:  

⭐ Xây dựng suốt thời gian học tập kể từ tổn thất gốc cho tới 27+  

⭐ Chọn thầy cô, lớp, môn học tập theo dõi sở thích  

⭐ Tương tác thẳng hai phía nằm trong thầy cô  

⭐ Học tới trường lại cho tới lúc nào hiểu bài xích thì thôi

⭐ Rèn tips tricks hùn bức tốc thời hạn thực hiện đề

⭐ Tặng full cỗ tư liệu độc quyền vô quy trình học tập tập

Đăng ký học tập demo không tính phí ngay!!

Xem thêm: âm mưu cơ bản của chiến lược chiến tranh đặc biệt là

Sau nội dung bài viết này, kỳ vọng những em tiếp tục bắt có thể được toàn cỗ lý thuyết và bài xích luyện vận dụng tính thể tích khối chóp tứ giác đều. Để đạt thêm nhiều kỹ năng hoặc về công thức toán hình 12, các em rất có thể truy vấn tức thì Vuihoc.vn nhằm ĐK thông tin tài khoản hoặc contact trung tâm tương hỗ và chuẩn bị chất lượng cho tới kỳ thi đua ĐH tiếp đây nhé!

>> Xem thêm:

  • 12 công thức tính thể tích khối chóp kèm cặp ví dụ cụ thể
  • Công thức tính thể tích khối tròn xoe xoay và bài xích luyện vận dụng
  • Công thức tính thể tích khối cầu thời gian nhanh và đúng đắn nhất
  • Công thức tính thể tích khối lăng trụ đứng không thiếu thốn nhất